翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gram determinant : ウィキペディア英語版
Gramian matrix
In linear algebra, the Gramian matrix (or Gram matrix or Gramian) of a set of vectors v_1,\dots, v_n in an inner product space is the Hermitian matrix of inner products, whose entries are given by G_=\langle v_i, v_j \rangle. For finite-dimensional real vectors with the usual Euclidean dot product, the Gram matrix is simply G = V^\mathrm V (or G = V^\dagger V for complex vectors using the conjugate transpose), where ''V'' is a matrix whose columns are the vectors v_k.
An important application is to compute linear independence: a set of vectors is linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.
It is named after Jørgen Pedersen Gram.
==Examples==
Most commonly, the vectors are elements of a Euclidean space, or are functions
in an ''L''2 space, such as continuous functions on a compact interval () (which are a subspace of ''L'' 2(())).
Given real-valued functions \ on the interval (), the Gram matrix G=(), is given by the standard inner product on functions:
: G_=\int_^ \ell_i(\tau)\bar(\tau)\, d\tau.
Given a real matrix ''A'', the matrix ''A''T''A'' is a Gram matrix (of the columns of ''A''), while the matrix ''AA''T is the Gram matrix of the rows of ''A''.
For a general bilinear form ''B'' on a finite-dimensional vector space over any field we can define a Gram matrix ''G'' attached to a set of vectors v_1,\dots, v_n by G_ = B(v_i,v_j) \, . The matrix will be symmetric if the bilinear form ''B'' is symmetric.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gramian matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.